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Abstract. The recent popularity of machine learning calls for a deeper
understanding of AI security. Amongst the numerous AI threats pub-
lished so far, poisoning attacks currently attract considerable attention.

In a poisoning attack the opponent partially tampers the dataset used
for learning to mislead the classifier during the testing phase.

This paper proposes a new protection strategy against poisoning attacks.

The technique relies on a new primitive called keyed non-parametric
hypothesis tests allowing to evaluate under adversarial conditions the
training input’s conformance with a previously learned distribution D.
To do so we use a secret key κ unknown to the opponent.

Keyed non-parametric hypothesis tests differs from classical tests in that
the secrecy of κ prevents the opponent from misleading the keyed test
into concluding that a (significantly) tampered dataset belongs to D.
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1 Introduction & Formalism

The recent popularity of machine learning calls for a deeper understanding of AI
security. Amongst the numerous AI threats published so far, poisoning attacks
currently attract considerable attention.

An ML algorithm A is a state machine with a two-phase life-cycle: during
the first phase, called training, A builds a model (captured by a state variable
σi) based on sample data D, called “training data”:

D = {d1, . . . , dk} where di = {datai, labeli}

Learning is hence defined by:

σi ← A(learn, σi−1, di)

e.g. datai can be human face images and the labeli ∈ {♂, ♀}.
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During the second phase, called testing1, A is given an unlabelled data. A’s
goal is to predict as accurately as possible the corresponding label given the
distribution D inferred from D.

label = A(test, σk,data)

We denote by T the dataset {datai, labeli} used during testing where labeli
is the correct label (solution) corresponding to datai and labeli is the label
predicted by A(test, σk,datai)

2.

In a poisoning attack the opponent partially tampers D to influence σk and
mislead A during testing. Formally, letting d = {data, label}, the attacker gen-
erates a poison dataset

D̃ = {d̃1, . . . , d̃k}

resulting in a corrupted model σ̃k such that

label 6= label = A(test, σ̃k,data)

Poisoning attacks were successfully implemented by tampering both incre-
mental and periodic training models. In the incremental training model 3, when-
ever a new di is seen during testing, A’s performance on di is evaluated and σ is
updated. In the periodic retraining model, data is stored in a buffer. WhenA falls
below a performance threshold (or after a fixed number of queries) the buffer’s
data is used to retrain A anew. Retraining is either done using the buffer alone
(resulting in a totally new σ) or by merging the buffer with previous information
(updating σ).

Protections against poisoning attacks can be categorized into two types: ro-
bustification and sanitizing :

Robustification (built-in resistance) modifies A so that it takes into account
the poison but tolerates its effect. Note that A does not need to identify the
poisoned data as such but the effect of poisonous data must be diminished,
dampened or nullified up to a point fit for purpose.

The two main robustification techniques discussed in the literature are:

Feature squeezing [32,26] is a model hardening technique that reduces data
complexity so that adversarial perturbations disappear because of low sensitiv-
ity. Usually the quality of the incoming data is degraded by encoding colors with
fewer values or by using a smoothing filter over the images. This maps several
inputs onto one “characteristic” or “canonical input” and reduces the pertur-
bations introduced by the attacker. While useful in practice, those techniques
inevitably degrade the A’s accuracy.

1 Or inference.
2 i.e. if A is perfect then label=label.
3 Also called the incremental update model.
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Defense-GANs [25] use Generative Adversarial Networks [10] to reduce the
poison’s efficiency. Informally, the GAN builds a model of the learned data and
projects the input onto it.

Sanitizing detects (by various methods e.g. [8,17]) and discards poisoned dis.
Note that sanitizing necessarily decreases A’s ability to learn.

This work prevents poisoning by sanitizing.

Figure 1 shows a generic abstraction of sanitizing. A takes D (periodically
or incrementally) and outputs a σ for the testing phase. But dis go through
the poisoning detection module Det before entering A. If Det decides that the
probability that some di is poisoned is too high, the suspicious di is trashed to
avoid corrupting σ.

Fig. 1: Before entering A, D is given to the poison detection module Det. If Det
decides that D is poisoned, D is trashed. Otherwise D is fed into A who updates
σ.

Because under normal circumstances D and T are drawn from the same
distribution D it is natural to implement Det using standard algorithms allowing
to test the hypothesis D ∈ D.

The most natural tool allowing one to do so is nonparametric hypothesis tests
(NPHTs, hereafter denoted by G). Let A,B be two datasets. G(A,B) ∈ {T,F}
allows to judge how compatible is a difference observed between A and B with
the hypothesis that A,B were drawn from the same distribution D.

It is important to underline that G is nonparametric, i.e. G makes no as-
sumptions on D.

The above makes NPHTs natural candidates for detecting poison. However,
whilst NPHTs are very good for natural hypothesis testing, they succumb spec-
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tacularly in adversarial scenarios where the attacker has full knowledge of the
target’s specification [13]. Indeed, section 3.1 illustrates such a collapse.

To regain a head-up over the attacker, our strategy will consist in mapping A
and B into a secret space unpredictable by the adversary where G can work con-
fidentially. This mapping is defined by a key κ making it hard for the adversary
to design A ∈ D and B ∈ D′ such that

G(A,B) = T and D 6= D′

2 A Brief Overview of Poisoning Attacks

Barreno et al. [2] were the first to coin the term “poisoning attacks”. Follow-up
works such as Kearns et al. [12] sophisticated and theorized this approach.

Classical references introducing poisoning are [23,22,20,24,4,30,21,31,18,7,15].
At times (e.g. [15]) the opponent does not create or modify di’s but rather adds
legitimate but carefully chosen di’s to D to bias learning. Those inputs are usu-
ally computed using gradient descent. This was later generalized by [25].

During a poisoning attack, data modifications can either concern data or
labels. [3] showed that a random flip of 40% of labels suffices to seriously affect
SVMs. [14] showed that inserting malicious points into D could gradually shift
the decision boundary of an anomaly detection classifier. Poisoning points were
obtained by solving a linear programming problem maximizing the mean of
the displacement of the mass center of D. For a more complete overview we
recommend [5].

Adversarial Goals. Poisoning may seek to influence the classifier’s decision
when presented with a later target query or to leak information about D or σ.

The attacker’s goals always apply to the testing phase and may be:

– Confidence Reduction: Have A make more errors. In many cases, “less con-
fidence” can clear suspicious instances at the benefit of doubt (in dubio pro
reo).

– Mis-classification attacks: are defined by replacing adj1, adj2 in the definition:

“Make A conclude that a adj1 datai belongs to a adj2 wrong label.”

Attack adj1 adj2
Mis-classification4 random random
Targeted Mis-classification chosen random
Source-Target Mis-classification chosen chosen

4 This is useful if any mistake may serve the opponent’s interests e.g. any navigation
error would crash a drone with high probability.
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Adversarial capabilities designate the degree of knowledge that the attacker
has on the target system. Bibliography distinguishes between training phase
capabilities and testing phase capabilities. Poisoning assumes training phase
capabilities.

The attacker’s capabilities may be:

– Data Injection: Add new data to D.
– Data Modification: Modify D before training.
– Logic Corruption: Modify the code (behavior) of A5.

3 Keyed Anti-Poisoning

To illustrate our strategy, we use Mann-Whitney’s U -test and Stouffer’s method
that we recall in the appendix.

We assume that when training starts, we are given a safe subset of D denoted
Ds (where the subscript s stands for “safe”). Our goal is to assess the safety of the
upcoming subset of D denoted Du (where the subscript u stands for “unknown”).

We assume that Ds and T come from the same distribution D. As mentioned
before, the idea is to map Ds and Du to a space fκ(D) hidden from the opponent.
f is keyed to prevent the attacker from predicting how to create adversarial input
fooling A.

Figure 2 shows the details of the Det plugin added to A in Figure 1. Det
takes a key κ, reads Ds, Du, performs the keyed transformation, calls G on
fκ(Du), fκ(Ds) and outputs a decision.

G can be Mann-Whitney’s test (illustrated in this paper) or any other NPHT
e.g. the location test, the paired T test, Siegel-Turkey’s test, the variance test,
or multidimensional tests such as deep gaussianization [29].

3.1 Trivial Mann-Whitney Poisoning

Let G be Mann-Whitney’s U -Test returning a p-value:

p = G(A,B) = G({a0, . . . , an1−1}, {b0, . . . , bn2−1})

G is, between others, susceptible to poisoning as follows: assume that A is
sampled from a Gaussian distribution A ∈R N (µA, σA) and that B is sampled
from {−q, q} where µA � q (Figure 3). While A and B are totally different, G
will be misled.

For instance, after picking 106 samples A ∈R N (0, 3) and 106 samples B ∈R
{−15, 15} (i.e. we took q = 15), we get a p-value of 0.99. From Mann-Whitney’s
perspective, A,B come from the same parent distribution with a very high degree
of confidence while, in all evidence, they do not.

5 This is the equivalent of fault attacks in cryptography.
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Fig. 2: Implementing Det using keying. Red: unknown to the opponent. Orange:
known by the opponent. Blue: controlled by the opponent.

Fig. 3: Trivial Mann-Whitney poisoning. Samples drawn from the blue distribu-
tion are Mann-Whitney-indistinguishable from samples drawn from the orange
one.
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3.2 Keyed Mann-Whitney

We instantiate fκ by secret random polynomials i.e. polynomials R(x) whose
coefficients are randomly and secretly refreshed before each invocation of G.
Instead of returning G(A,B), Det returns G(R(A), R(B)) where:

R(A) =
{
R(a0), . . . , R(an1−1)

}
and R(B) =

{
R(b0), . . . , R(bn2−1)

}
The rationale is that R will map the attacker’s input to an unpredictable

location in which the Mann-Whitney is very likely to be safe.

` random polynomials R1(x), . . . , R`(x) are selected as keys and Det calls G
for each polynomial. To aggregate all resulting p-values, Det computes:

∆ = Stouffer
(
G
(
R1(A), R1(B)

)
, . . . , G

(
R`(A), R`(B)

))
If ∆ ≈ 0, the sample is rejected as poisonous with very high probability.

Note that any smooth function can be used as R, e.g. B-splines. The crite-
rion on R is that the random selection process must yield significantly different
functions.

3.3 Experiments

We illustrate the above by protecting N (0, 1). The good thing about N (0, 1)
is that random polynomials tend to diverge when x = 1 but adapt well to the
central interval in which the Gaussian is not negligible.

We attack N (0, 1) by poisoning with {−q, q}, where q is set to 3, 2, 1, and
0.5, respectively. For each value of q, two sets of 50 samples are drawn from
the two distributions. Those samples are then transformed into other sets by
applying a random polynomial of degree 4 and then fed into G to obtain a p-
value (using the two-sided mode). This p-value predicts whether these two sets
of transformed samples come from the same distribution: a p-value close to 0 is a
strong evidence against the null hypothesis. In each of our experiments, we apply
nine secret random polynomials of degree 4 and aggregate the resulting p-values
using Stouffer’s method. For each setting, we run 1000 simulations. Similarly, for
the same polynomials and q, we run a “honest” test, where both samples come
from the same distribution.

We thus retrieve 1000 “attack” p-values, which we sort by ascending order.
Similarly, we sort the “honest” p-values. It is a classic result that, under the null
hypothesis, a p-value follows a random uniform distribution over [0, 1], hence a
plot of the sorted “honest” p-values is a linear curve.

An attack is successful if, on average, the “attack” sample is accepted as least
as often as the “honest” sample. This can be rewritten as E(pattack) ≥ E(phonest),
with E the . Hence, a sufficient condition for the validity is that the curve of
sorted attack p-values (solid lines in our figures) is above the curve of sorted
honest p-values (dashed lines).
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Experimental results are summarized in Figures 4, 5, 6 and 7.

The first quadrant illustrates the polynomials used in the simulation and two
bars for {−q, q}. The same random polynomials were used for each experiment.
For simplicity, the coefficients of the polynomials were uniformly selected from
{−1, 0, 1}, and (useless) polynomials of degree lower than 2 were excluded from
the random selection. Then, we also added the identity polynomial (poly0), as
a witness of what happens when there is no protection.

The following nine quadrants give the distribution of p-values for each poly-
nomial, over 1000 simulations, sorted in increasing order. The dotted distribution
corresponds to what an honest user would obtain, whereas the plain line simu-
lation is based on poisoned datasets.

The last quadrant contains the sorted distribution of the aggregated p-values
using Stouffer. Experimental results show that for poisoned datasets, the aggre-
gated p-values remain close to zero, while a honest dataset does not appear to be
significantly affected. In other words, with very high probability, keyed testing
detects poisoning.
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Fig. 4: Attack with q = 3. Defense with polynomials of degree 4.

3.4 Discussion

We observe a saturation when q is too far from µA, this is due to the fact that
even after passing through R the attack samples remain at the extremes. Hence
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Fig. 5: Attack with q = 2. Defense with polynomials of degree 4.
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Fig. 6: Attack with q = 1. Defense with polynomials of degree 4.
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Fig. 7: Attack with q = 0.5. Defense with polynomials of degree 4.

if R is of odd degree, nothing changes. If the degree of R is even then the two
extremes are projected to the same side and Mann-Whitney detects 100% of
the poisonings. It follows that at saturation a keyed Mann-Whitney gives either
very high or very low p-value. This means that polynomials or B-splines must
be carefully chosen to make keying effective.

The advantage of combining the p-values with Stouffer’s method is that the
weak p-values are very penalizing (by opposition to Pearson’s method whose
combined p-value degrades much slower). A more conservative aggregation would
be using Fisher’s method.

All in all, experimental results reveal that keying managed to endow the test
with a significant level of immunity.

Interestingly, Det can be implemented independently of A.

A cautionary note: Our scenario assumes that testing does not start before
learning is complete. If the opponent can alternate learning and testing then he
may infer that a poisonous sample was taken into account (if σ was updated and
A’s behavior was modified). This may open the door to attacks on A.

4 Notes and Further Research

This paper opens perspectives beyond the specific poisoning problem. e.g. cryp-
tographers frequently use randomness tests R to assess the quality of random
number generators. In a strong attack model where the attacker knows R and
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controls the random source it becomes possible to trick many Rs into declaring
flagrantly non random data as random. Hence, the authors believe that devel-
oping keyed randomness tests Rκ is important and useful as such.

For instance, in the original minimum distance test 8000 points (a set S) sam-
pled from the tested randomness source S are placed in a 10000× 10000 square.
Let δ be the minimum distance between the pairs. If S is random then δ2 is
exponentially distributed with mean 0.995. To key the test a secret permutation
Rκ of the plan can generated and the test can be applied to Rκ(S).

To the best of our knowledge such primitives were not proposed yet.

We note, however, that keyed protections to different (non cryptographic!)
decision problems in very diverse areas do emerge independently e.g. [19,1,9,28].
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A Mann-Whitney’s U -Test

Let D be an arbitrary distribution.

Mann-Whitney’s U -test is a non-parametric hypothesis test. The test as-
sumes that the two compared sample sets X0, X1 are independent and that a
total order exists on their elements (which is the case for real-valued data such
as ML feature vectors).

Assuming that X0 ∈R D:

– The null hypothesis H0 is that X1 ∈R D.
– The alternative hypothesis H1 is that X1 ∈R D′ for D 6= D′.

The test is consistent6 when, under H1, P (X0 > X1) 6= P (X1 > X0).

The test computes a statistic called U , which distribution under H0 is known.
When #X0 and #X1 are large enough, the distribution of U under H0 is ap-
proximated by a normal distribution of known mean and variance.

U is computed as follows:

1. Merge the elements of X0 and X1. Sort the resulting list by ascending order.
2. Assign a rank to each element of the merged list. Equal elements get as rank

the midpoint of their adjusted rankings7.
3. Sum the ranks for each set. Let Ri be this sum for Xi. Note that if ni = #Xi

then R1−i = n(n+ 1)/2−Ri, with n = n0 + n1.

4. Let Ui = Ri − ni(ni+1)
2 and U = min(U0, U1).

When the #Xi are large enough (> 20 elements) U approximately follows a
normal distribution.

Hence, one can check if the value

z =
U − λU
σU

follows a standard normal distribution under H0, with λU being the mean of U ,
and σU its standard deviation under H0:

λU =
n0n1

2
and σU =

 
n0n1(n+ 1)

12

However, the previous formulae are only valid when there are no tied ranks.
For tied ranks, the following formula is to be used:

σU =

Ã
n0n1
12

(
(n+ 1)−

k∑
i=1

t3i − ti
n(n− 1)

)
Because under H0, z follows a normal distribution, we can estimate the likeli-

hood that the observed values comes from a standard normal distribution, hence
getting a related p-value from the standard normal table.

6 i.e., its power increases with #X0 and #X1.
7 e.g., in the list 1, 4, 4, 4, 4, 6, the fours all get the rank 3.5
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B Stouffer’s p-Value Aggregation Method

p values can be aggregated in different ways [11]. Stouffer [27] observes that
the z-value defined by z = Φ−1(p) is a standard normal variable under H0

where Φ is the standard normal CDF. Hence when {p1, . . . , p`} are translated
into {z1, . . . , z`}, we get a collection of independent and identically distributed
standard normal variables under H0. To combine the effect of all tests we sum all
the zi which follows a normal distribution under H0 with mean 0 and variance
`. The global test statistic

Z =
1

`

∑̀
i=1

z(pi)

is hence standard normal under H0 and can thus be reconverted into a p-value
in the standard normal table.

Note that in theory, combining p-values using Stouffer’s method requires that
the tests are independent. Other methods can be used for combining p-values
from non-independent tests, e.g. [16,6]. However, these calculations imply that
the underlying joint distribution is known, and the derivation of the combination
statistics percentiles requires a numerical approximation.
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